
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{N}\mathrm{U}\mathrm{M}\mathrm{E}\mathrm{R}. \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. © 2026 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}

\mathrm{V}\mathrm{o}\mathrm{l}. 64, \mathrm{N}\mathrm{o}. 1, \mathrm{p}\mathrm{p}. 170--192

SUPPORT GRAPH PRECONDITIONERS FOR OFF-LATTICE
CELL-BASED MODELS\ast 

JUSTIN STEINMAN\dagger AND ANDREAS BUTTENSCH\"ON\dagger 

Abstract. Off-lattice agent-based models (or cell-based models) of multicellular systems are
increasingly used to create in-silico models of in-vitro and in-vivo experimental setups of cells and
tissues, such as cancer spheroids, neural crest cell migration, and liver lobules. These applications,
which simulate thousands to millions of cells, require robust and efficient numerical methods. At
their core, these models necessitate the solution of a large friction-dominated equation of motion, re-
sulting in a sparse, symmetric, and positive definite matrix equation. The conjugate gradient method
is employed to solve this problem, but this requires a good preconditioner for optimal performance.
In this study, we develop a graph-based preconditioning strategy that can be easily implemented
in such agent-based models. Our approach centers on extending support graph preconditioners to
block-structured matrices. We prove asymptotic bounds on the condition number of these precondi-
tioned friction matrices. We then benchmark the conjugate gradient method with our support graph
preconditioners and compare its performance to other common preconditioning strategies.

Key words. support graph preconditioner, agent-based model, maximum spanning tree, block
Laplacian, conjugate gradient method

MSC codes. 05C50, 65F08, 92-08

DOI. 10.1137/25M1727904

1. Introduction. Agent-based models that simulate individual entities such as
humans, animals, or biological cells are an indispensable tool for studying emergent
behaviors in complex systems. Over the last few decades, biomedical research has
adopted agent-based models to develop digital-twins of in-vitro and in-vivo experi-
ments on cell cultures and tissues [4]. To capture a wide variety of applications and
research questions, many different agent-based models have been developed. Broadly,
we categorize them into lattice-based (e.g., Cellular Automata [18] or Cellular Potts
models [15]) and off-lattice models [26]. These different models each have advantages
and disadvantages. For an overview, we refer the reader to the review [42]. Here,
we focus on off-lattice models closely related to colloidal physics [9]. In these mod-
els, cells are approximated by elastic spheroids [10, 14], capsules [5], ellipsoids [33],
or surfaces of triangulated meshes [26]. The applications of these models are highly
varied, including slime-mold aggregation [33], cancer growth and migration [23, 28],
cancer monolayers and spheroids [10, 41], liver lobules [20], and neural crest cells [30].

A typical cell configuration of spherical cells with radii Ri is shown in Figure 1.
Advancing the simulation from t\rightarrow t+\Delta t requires solving the overdamped equation
of motion \Gamma v = F, where \Gamma is the friction matrix, v the cells' velocities, and F the
forces. The matrix \Gamma is block-structured, symmetric, and positive definite because
the individual 3\times 3 friction matrices are symmetric and positive definite [26]. There
is a nonzero off-diagonal block in \Gamma at position (i, j) when cells i and j are in contact.
We ultimately solve this large linear system using the conjugate gradient method.

Profiling our simulation software used in [5, 26, 41] shows that solving the equa-
tion of motion is often the most time-intensive step. We hypothesize that this is

\ast Received by the editors January 22, 2025; accepted for publication (in revised form) November
26, 2025; published electronically February 3, 2026.

https://doi.org/10.1137/25M1727904
\dagger Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA

01003 USA (jsteinman@umass.edu, abuttenschoe@umass.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

170

https://doi.org/10.1137/25M1727904
mailto:jsteinman@umass.edu
mailto:abuttenschoe@umass.edu


BLOCK SUPPORT GRAPH PRECONDITIONERS 171

12

3

4

12

3

4

(B) Collision graph(A) Cell configuration (C) Tree - Preconditioner

Fig. 1. Graphical overview of our preconditioner construction. The figure illustrates the step-
by-step construction of our proposed preconditioner, proceeding from left to right. (A) Agent con-
figuration. The initial setup showing individual agents (cells) in a spatial arrangement. (B) The
collision graph. Using collision detection algorithms, we construct a graph where nodes represent
agents and edges represent collisions or friction interactions between them. The friction matrix is
the graph Laplacian of the collision graph. (C) The maximum spanning tree. Using Prim's algo-
rithm, we construct a maximum spanning tree from the collision graph. The graph Laplacian of this
tree, is used as the preconditioner.

because no good preconditioners have been identified or developed so far. From an
implementation point of view, it is convenient to implement the linear algebra methods
in a matrix-free manner. This means that ``off the shelf"" preconditioning techniques
are difficult to use or adapt. Further, the condition number of the friction matrix \Gamma is
determined by the cells' free surface area. This means that the condition number of
the friction matrix varies during a given simulation. Additionally, the sparsity struc-
ture of \Gamma is dynamic because it encodes interacting cell pairs. This makes selecting a
preconditioner difficult. Here, we solve this by using the collision graph constructed
during the collision detection phase as our central data structure instead of the usual
sparse matrix implementations.

These observations, together with the increasing role agent-based models play
in biomedical research, motivate our work. Our goal is to develop and benchmark
a preconditioning strategy for the friction matrix \Gamma that is easily implemented in a
matrix-free manner and reduces the required computational time for solving the linear
system.

1.1. Support graph preconditioners. The computational cost per iteration
of the conjugate gradient method is dominated by the matrix-vector product. Thus,
we aim to reduce the number of required iterations. Let ek denote the true error
at the kth iteration (i.e., the difference between the computed approximation at the
kth iteration and the true solution). The well-known error estimate for the conjugate
gradient method is given by [36]

\| ek\| \Gamma \leq 2

\Biggl( \sqrt{} 
\kappa (\Gamma ) - 1\sqrt{} 
\kappa (\Gamma ) + 1

\Biggr) k

\| e0\| \Gamma ,

where \kappa (\Gamma ) is the spectral condition number of \Gamma , which is a function of the contact
areas and the ratio of the friction coefficients.

The error estimate suggests that a matrix with higher condition number requires
more iterations. However, conjugate gradient convergence is more complex and often
faster than this estimate suggests [27]. While this estimate has limited practical use,
it does motivate the reduction of the condition number through preconditioning.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



172 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

To precondition the system, we choose a symmetric matrix H = EET such that
\Gamma  - 1 \sim H. We then solve the modified system ET\Gamma E\^x = ETF and x = E\^x. This
approach often reduces the iteration count if \kappa (ET\Gamma E)<\kappa (\Gamma ), and reduces run time
if we choose H so that solving Hx= b is computationally inexpensive.

Preconditioning is crucial in many problems, particularly those arising from the
discretization of partial differential equations. While no unifying theory exists, it is
a well-developed field [7, 16]. Our focus on a matrix-free implementation limits the
direct application of many existing preconditioning techniques to our problem.

In off-lattice agent-based models, we can interpret the off-diagonal sparsity pat-
tern of \Gamma as a graph \frakC (see Figure 1). This graph representation works as follows:

\bullet Each cell at position ri is represented as the ith vertex.
\bullet We draw an edge e = (i, j) between vertices i and j when the cells' contact

area Aij is nonzero.
\bullet The edges are weighted by the cell-cell friction matrices \Gamma cc

ij .
\bullet Cell-substrate matrices \Gamma cs

i are represented with weighted self-loops.
The result is an undirected, matrix-weighted, and labeled (by cell id) graph that

represents the friction matrix.
The relationship between matrices and graphs is well-established [35] and under-

pins many algorithms for sparse matrices. Typically, the matrix is constructed first,
and its underlying graph is derived subsequently. Our approach reverses this process:
we start with the collision graph constructed during the collision detection phase,
and derive the friction matrix from it. Specifically, the friction matrix is the block
Laplacian of the collision graph.

We employ a technique pioneered by Vaidya [40] that uses subgraphs of \frakC as pre-
conditioners. Subgraphs are advantageous because they are sparse, yet capture much
of the relevant information from \frakC . This characteristic allows them to effectively bal-
ance between approximating \Gamma and computational efficiency. In our implementation,
we specifically use a maximum spanning tree. This tree can be constructed in lin-
earithmic time, and its associated matrix can be factored in linear time. The broader
study of using subgraphs as preconditioners is known as support graph theory.

Vaidya's original manuscript lacked many proofs, which were later provided in
[2]. In our work, we extend these proofs to apply to block-structured matrices. This
extension allows us to obtain estimates for the smallest and largest eigenvalues of such
preconditioned systems. These eigenvalue bounds serve two important purposes: (1)
they provide worst-case convergence estimates, and (2) They are valuable in imple-
menting the robust conjugate gradient stopping criteria proposed by [1, 31].

1.2. Outline. The remainder of this paper is organized as follows: In section 2,
we introduce the linear system arising from agent-based models and its natural graph
structure. This section provides the foundation for understanding the mathematical
framework of our approach. Section 3 focuses on Vaidya's preconditioners. We ex-
plain how to construct these preconditioners for block-structured matrices and solve
the resulting systems in near-linear time. This section bridges the gap between graph
theory and numerical linear algebra. Section 4 presents our main theoretical con-
tribution. Here, we extend support graph theory to block-structured matrices and
derive eigenvalue bounds for the preconditioned linear system. This extension is cru-
cial for applying support graph theory to the matrices arising in agent-based models.
In section 5, we present our numerical results. We demonstrate the effectiveness of
our preconditioner using a series of numerical benchmarks. These experiments val-
idate our theoretical findings and showcase the practical benefits of our approach.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 173

Finally, section 6 concludes the paper with a discussion of our findings, and its im-
plications for real-world use cases. We situate our contributions in the broader the-
oretical landscape and discuss connections to the existing literature on this problem.
Additionally, we provide potential directions for future research in this area.

2. Preliminaries. This section introduces the basic graph and matrix structure
of our problem. From the collision detection phase of an off-lattice simulation, we
derive a matrix-vector equation whose solution represents the velocities of all the
cells. We then show that the matrix we are solving is the block Laplacian of the
collision graph, and we use this to prove positive definiteness. To set the stage for our
subsequent discussion, we briefly outline the steps of an off-lattice model, considering
a simulation of n spherical cells.

Step 1: Broad-phase collision detection. Identify possible cell contact pairs (i, j).
Efficient divide-and-conquer algorithms, such as axis-aligned bounding
boxes, are commonly used [39].

Step 2: Compute forces between cells. Examine the possible cell pairs identified
in the previous step, and identify interacting cells. Then, compute their
contact area and contact force using a physical model. We denote the
contact area between cells i and j by Aij . For spherical cells, Hertz or
JKR contact mechanics are commonly used [26].

Step 3: Assemble the friction matrices. Construct the 3 \times 3 cell-cell and cell-
substrate friction matrices. The cell-cell friction matrix between cells i
and j is given by

\Gamma cc
ij =Aij

\bigl( 
\gamma \| uij \otimes uij + \gamma \bot (I  - uij \otimes uij)

\bigr) 
,(2.1)

where \gamma \| and \gamma \bot are the parallel and perpendicular coefficients of fric-
tion, respectively (both of which are positive), and uij \in \BbbR 3 is the unit
contact vector [26]. If ri is the position of cell i, then

uij =
rj  - ri
\| rj  - ri\| 

.

The cell-substrate friction matrix has several possible forms depending
on the cell shape. In the isotropic case of spherical cells, we can write
\Gamma cs
i = \lambda medI, where \lambda med is the coefficient of friction between the cell and

the medium. For ellipsoidal cells, the cell-substrate friction matrix takes
on a similar form to the cell-cell friction matrix in terms of directional
friction coefficients and the unit direction vector. More complicated cell
shapes may not be as easily expressible, but we only require that all the
friction matrices are symmetric positive definite.

Step 4: Solve the equation of motion. The equation of motion for cell i is

\Gamma cs
i vi +

\sum 
Aij>0

\Gamma cc
ij (vi  - vj) =Fi,(2.2)

where vi is the velocity vector and Fi is the total nonfrictional force
acting on the cell. We interpret Equation (2.2) as one row of a large
linear system \Gamma v = F. For n cells, the friction matrix \Gamma is 3n \times 3n,
and we show that \Gamma is symmetric positive definite. Hence, the conjugate
gradient method is an efficient choice for obtaining an accurate solution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



174 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

Step 5: Update cell positions. Frequently, a forward Euler method is used:

ri(t+\Delta t) = ri(t) +\Delta tvi,

where the step-size \Delta t is chosen according to the Euler's method sta-
bility criterion. Higher-order integration methods are rarely used. Two
exceptions are PhysiCell [14], which employs a second-order Adam's--
Bashford method with a fixed time-step, and [5], where an embedded
Runge--Kutta-23 method with an adaptive time-step is employed.

Since the friction matrix \Gamma is composed of 3\times 3 blocks, we establish a few simple
properties of these smaller friction matrices. Note that each cell-cell friction matrix
(and the cell-substrate friction matrix of an ellipsoidal cell) is the sum of two or-
thogonal projectors. Let \gamma max and \gamma min be the maximum and minimum elements of
\{ \gamma \| , \gamma \bot \} , respectively.

Lemma 2.1. Let u\in \BbbR n be a unit vector, then the matrix

\Upsilon = \gamma \| u\otimes u+ \gamma \bot (I  - u\otimes u) ,

1. is symmetric positive definite;
2. its eigenvalues are \gamma \| and \gamma \bot with multiplicities 1 and 2 respectively;
3. its eigenspaces are E\gamma \| = span(u) and E\gamma \bot =E\bot 

\gamma \| 
;

4. its operator norm (with respect to the 2-norm) is \| \Upsilon \| = \gamma max; and
5. its condition number is

\kappa (\Upsilon ) =
\gamma max

\gamma min
.

Proof. The projection matrices u\otimes u and I  - u\otimes u are clearly symmetric. Note
that (u\otimes u)u = u, so \Upsilon u = \gamma \| u. Since the eigenvectors of a real symmetric matrix
are orthogonal, take w such that wTu= 0. Then (u\otimes u)w= 0, so \Upsilon w= \gamma \bot w. The
vector w lies in the orthogonal complement of u, which is two-dimensional. Both of
the eigenvalues are positive, which gives positive definiteness. The operator norm of
a symmetric positive definite matrix is the maximum eigenvalue.

Ill-conditioned cell-cell friction matrices will make our preconditioners less effec-
tive even if \Gamma as a whole is well-conditioned. In the extreme case of rank-deficient
friction matrices, perhaps representing freely rotating objects, our condition number
bounds in section 4 do not hold and support graph preconditioners are likely a poor
choice.

Observe that the off-diagonal sparsity pattern of \Gamma is determined by the interact-
ing cell pairs. We interpret this as a matrix-weighted graph.

Definition 2.2 (matrix-weighted graph). A matrix-weighted graph is a triple
G= (V,E,w) where (V,E) is an undirected graph with a matrix-valued weight function
w : V \times V \rightarrow \BbbR d\times d. We require that w(e) is positive definite for all e\in E, that w(v, v)
is positive semidefinite for all v \in V , and that w(u, v) = 0 otherwise.

We allow nonzero weights on pairs (v, v) for convenience when representing cell-
substrate friction. To refer to the number of edges | E| and the number of vertices
| V | , we use m and n respectively. We reserve the Fraktur font for objects relating
to the collision graph. Let \frakD be the set of cells, \frakE the set of interacting cell pairs,
and w : \frakD \times \frakD \rightarrow \BbbR 3\times 3 the weight function with w(i, j) = \Gamma cc

ij for all (i, j) \in \frakE and
w(i, i) = \Gamma cs

i for all i\in \frakD . These form the collision graph \frakC = (\frakD ,\frakE ,w). This graph is
typically very sparse with m=\scrO (n).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 175

Most of the matrices in this paper have a block structure. If A is an m\times n block
matrix, then we mean that A is m blocks tall by n blocks wide. The precise size of the
blocks is not important, but we assume they are square. To be explicit when indexing
block matrices, we use an underline to index over blocks. For example, define a 2\times 2
block matrix

A=

\biggl( 
W X
Y Z

\biggr) 
.

Then A11 =W11 and A11 =W . We also use this notation for vectors. If a= ( xy ),
then a1 = x1 and a1 = x.

To formalize the relation between the friction matrix \Gamma and the collision graph \frakC ,
we introduce the block Laplacian.

Definition 2.3 (block Laplacian). A block Laplacian is a symmetric block matrix
whose off-diagonal blocks are either zero or negative definite, and whose block row and
column sums are positive semidefinite. For a matrix-weighted graph G = (V,E,w),
the block Laplacian of G is the matrix L where

Lij =

\Biggl\{ 
 - w(i, j) i \not = j,

w(i, i) +
\sum 

k \not =iw(i, k) i= j.

Note that block Laplacians are not diagonally dominant in general, but the condi-
tion we impose on their block row and column sums is analogous. We show in section 4
that this generalized notion of block diagonal dominance is sufficient to apply support
graph preconditioners.

Another mathematical structure that seems closely related to the block Laplacian
at first glance is the connection Laplacian introduced by Singer and Wu in [37].
However, a key difference between the two structures is that connection Laplacians
with real entries require the edge weights to be orthogonal, whereas block Laplacians
only require positive definiteness. It is almost never the case that the collision graph
yields a connection Laplacian because this would require both friction coefficients
to be 1. The solver presented in [24] works on a class matrices satisfying a certain
definition of block diagonal dominance which connection Laplacians belong to but
block Laplacians generally do not. So the theory of connection Laplacians is not
generally applicable to block Laplacians.

It is easy to see that \Gamma is the block Laplacian of \frakC . The following lemma establishes
the definiteness needed to apply the conjugate gradient method.

Lemma 2.4. All block Laplacians are positive semidefinite, and they are positive
definite when their block row sums are positive definite.

Proof. Let A be a block Laplacian. For all x,

xTAx=
\sum 
i

xT
i Aiixi +

\sum 
i \not =j

xT
i Aijxj

\geq 
\sum 
i \not =j

| xT
i Aijxi| +

\sum 
i \not =j

xT
i Aijxj

=
\sum 
i>j

\Bigl( 
| xT

i Aijxi| + | xT
j Aijxj | + 2(xT

i Aijxj)
\Bigr) 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



176 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

This inequality is strict when the block row sums are positive definite. By the AM-GM
and Cauchy--Schwarz inequalities, respectively,

| xT
i Aijxi| + | xT

j Aijxj | \geq 2
\sqrt{} 
| xT

i Aijxi| \cdot | xT
j Aijxj | \geq 2| xT

i Aijxj | .

This implies that each term in the summation above is nonnegative, which yields the
desired result.

3. Support graph preconditioners. To effectively precondition \Gamma , we need to
find an easily factorable matrix that closely approximates it. This section introduces
support graph theory and Vaidya's preconditioners as tools to do this, along with
efficient graph algorithms for their implementation. Typically, an underlying graph is
derived from a given matrix. This graph is manipulated (e.g., by taking a subgraph)
and its Laplacian is used as a preconditioner. However, since the friction matrix is
derived from the collision detection phase, it is more appropriate for us to view \Gamma 
as the underlying matrix of \frakC , and we can derive preconditioners from manipulations
(e.g., subgraphs) of the collision graph. This is why support graph preconditioners are
a natural choice for simulations. In fact, we can entirely avoid assembling matrices by
working with the collision graph. All we need are the contact areas, normal vectors,
and friction coefficients.

3.1. Vaidya's preconditioners. The first of Vaidya's preconditioners is the
maximum spanning tree (MST) preconditioner. The idea is to precondition the Lapla-
cian of a graph with the Laplacian of an MST. We work with trees because their
Laplacians can be factored in linear time, and MSTs in particular because they cap-
ture a lot relevant information about the graph. In other words, an MST ``supports""
its parent graph well.

Since we are working with matrix-weighted graphs, we define an MST with respect
to the minimum eigenvalues of the weights, a choice that is justified in the next section.
In the case of \frakC , this is equivalent to weighting by contact area. We also include the
self-loops (i.e., the cell-substrate friction) in the MST. Let T be an MST of \frakC and let P
be its block Laplacian. We call T a support graph of \frakC and P an MST preconditioner
of \Gamma .

Vaidya's second class of preconditioners builds on the first by adding edges back to
an MST. Given a parameter t, we split an MST into t disjoint subtrees of roughly the
same size where each subtree has at most m/t vertices. Then we add the maximum
weight edge in \frakC between each pair of subtrees if they are connected in \frakC . Let T\prime 

be an augmented MST and P \prime its block Laplacian. We call P \prime an augmented MST
preconditioner of \Gamma . The theoretically optimal value of t is approximately n1/4 [6].

The only step left to define is how we generate the support graph. Prim's al-
gorithm is the best choice for finding an MST because it tells us, at no extra cost,
how to permute the rows and columns of the block Laplacian to generate zero fill
during factorization. We prove this in the next subsection. The time complexity of
Prim's algorithm is \scrO (m logn). Augmenting an MST is straightforward once it has
been decomposed into subtrees. A simple partitioning algorithm is presented in [6,
TreePartition] and a more sophisticated one in [38].

3.2. The elimination game. When factoring or performing Gaussian elimina-
tion on a matrix, new nonzero entries may be created, changing the sparsity pattern
of the matrix. These new entries, called fill, require more memory and slow down
computations. However, permuting the rows and columns of the matrix can change

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 177

1

32 4

5

32 4

1

5

No-fill orderingOrdering with fill

Fig. 2. An example of the elimination game being played on the same graph with different
orderings. Graph edges and matrix entries are in solid black and denoted by crosses respectively.
Fill edges and entries are in dotted blue and blue circles respectively.

the amount of fill. There is a graphical interpretation of Gaussian elimination that
shows how fill is created, called the elimination game [34].

In the game, all the vertices of a graph are eliminated in some order (e.g., see
Figure 2 where the elimination order is according to the vertex labels). When a
vertex v is eliminated, fill edges are constructed so that the uneliminated neighbors
of v (connected by either an original or fill edge) become pairwise adjacent. In other
words, the uneliminated neighbors of v become a clique. The set of fill edges is in
bijection with the set of fill entries that would be created during Gaussian elimination
or decomposition. Note that the elimination game is never explicitly implemented but
rather implicitly performed. Using this game, we can easily analyze the amount of fill
created by a given permutation. The general problem of minimizing fill is NP-hard
[43], but trees can easily be ordered to produce no fill.

Lemma 3.1. An ordering of the vertices of a rooted tree where no vertex occurs
before any of its children produces no fill in the elimination game.

Proof. The first vertex eliminated must be a leaf. This produces no fill and yields
another rooted tree. Inductively, the hypothesis demands that each vertex must be a
leaf when it is eliminated, otherwise, it would have children to eliminate first. Since
eliminating leaves produces no fill, we get the desired result.

Corollary 3.2. The reverse order in which vertices are added to the MST in
Prim's algorithm produces no fill in the elimination game.

For augmented trees, reducing fill is far less simple. Reversing the traversal order
of Prim's algorithm can yield very poor results. For example, if the added edges
are between vertices that occur late in the traversal order, then lots of unnecessary
fill is created. Of course, vertices that are not the ancestor of (we say a vertex is
its own ancestor) an endpoint of an added edge can be eliminated as before without
producing any fill. The rest of the vertices can be eliminated in the order specified
by a fill-reducing algorithm. Both GENMMD and METIS are tested in [6], but it is
worth mentioning that Chen and Toledo only work with matrices whose underlying
graphs are regular meshes. Cell-based models tend to produce more irregularities in
their graph structure. A variety of algorithms like reverse Cuthill--McKee may also
perform well [11].

3.3. Solving preconditioners. Matrix inverses are seldom computed explicitly.
Instead, large matrices are decomposed into the product of diagonal and triangular
matrices in which solving systems is easy. For a symmetric positive definite matrix M ,
the Cholesky decomposition finds a lower triangular matrix L such that M = LLT .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



178 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

We instead opt for the similar LDLT decomposition in which D is a diagonal matrix
and L has only ones on its diagonal. This is preferable for block matrices because it
avoids computing matrix square roots. This section provides a general decomposition
algorithm for symmetric positive definite block matrices and adapts it to the special
case of nonsingular block Laplacians of trees.

The general LDLT algorithm takes \scrO (n3) time, but we show that the precondi-
tioners we want to factor are sparse and only take linear or near-linear time. Another
perk of this algorithm is that L can be calculated in-place because previous entries in
A are not reused.

Algorithm 3.1. It is worth restating this algorithm because we cannot take
commutativity for granted as is often done.

1: function LDLT(A: n\times n symmetric positive definite block matrix)
2: L,D\leftarrow n\times n block matrices
3: for i\leftarrow 1, n do  \triangleleft Current column
4: X\leftarrow 0
5: for j\leftarrow 1, . . . , i - 1 do
6: X\leftarrow X +LijDjjLij

7: end for
8: Dii\leftarrow Aii  - X
9: Lii\leftarrow I
10: for j\leftarrow i+ 1, . . . , n do  \triangleleft Current row
11: Y \leftarrow 0
12: for k\leftarrow 1, . . . , i - 1 do
13: Y \leftarrow Y +LikDkkLjk  \triangleleft Subtract previous outer products

14: end for
15: Lji\leftarrow (Aji  - Y )D - 1

ii

16: end for
17: end for
18: return (L,D)
19: end function

Algorithm 3.2.

1: function TreeLDLT(A: nonsingular block Laplacian of a rooted tree)
2: L,D\leftarrow n\times n block matrices
3: for all vertices i in decreasing order of distance to the root do
4: X\leftarrow 0
5: for all children j of i do
6: X\leftarrow X +LijDjjLij

7: end for
8: Dii\leftarrow Aii  - X
9: Lii\leftarrow 1
10: j\leftarrow parent of i
11: Lji\leftarrow AjiD

 - 1
ii

12: end for
13: return (L,D)
14: end function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 179

Theorem 3.3. Algorithm 3.2 returns the LDLT factorization of the nonsingular
block Laplacian of a matrix-weighted tree in \scrO (n) time. The sparsity pattern of L is
the same as the lower triangle of the original matrix.

Proof. We assume the validity of Algorithm 3.1 and prove its equivalence to
Algorithm 3.2 in this special case. Say that the rows and columns of A are ordered
as specified on line 3 of Algorithm 3.2, so i < j means that vertex i is at least as far
from the root as vertex j. In this case, we say that i is younger than j and that j
is older than i. Note that vertices i and j being connected is equivalent to Aij being
nonzero. Lines 5--7 in both algorithms behave identically because the only vertices
younger than i that are also connected to i are its children.

We want to show the equivalence of lines 10--16 in Algorithm 3.1 to lines 10--11
in Algorithm 3.2. We prove by induction on i that, in Algorithm 3.1, Lji is nonzero
only if i is connected to j for all j > i. The hypothesis holds for the first vertex
because Y is guaranteed to be zero as there are no younger vertices. Now assume
that the hypothesis holds for all vertices younger than some i. If Y is nonzero, then
there exists an older vertex j and a younger vertex k such that k is connected to both
i and j. However, the only vertex older than k that it is connected to is its unique
parent. This implies that i = j, which contradicts line 10. Therefore, Y is zero and
the hypothesis is true, meaning the only j we need to consider is the parent of i.

When there is zero fill, no additional memory allocation is required for L even
when using a matrix-free or sparse matrix implementation. However, this is not
the case for augmented MST preconditioners. Algorithm 3.2 is no longer valid and
extra fill entries need to be stored for a complete factorization. Other options for
solving systems in the augmented MST preconditioner include using an incomplete
factorization with a fill-reducing algorithm like one of those mentioned in section 3.2,
or making a nested call to the conjugate gradient method with the standard MST as
the preconditioner.

This begs the question of whether there exists an effective augmentation strategy
with which complete factorizations do not create fill. This restricts us to only add
back edges between siblings in the MST. However, we suspect that this would not
yield promising results for reasons we formalize in the next section. Intuitively, we
want to add back edges that drastically reduce the distance between pairs of vertices
(i.e., reduce the stretch), but sibling edges do a poor job of this.

Another benefit of the standard MST preconditioner is that solving systems in
the decomposed block Laplacian takes linear time. We provide algorithms for this in
section B.1. Finally, it is known that block LU factorization for symmetric positive
definite matrices is stable as long as the matrix is well-conditioned [8, 19].

4. Block-structured support graph theory. The existing literature on sup-
port graphs focuses entirely on symmetric diagonally dominant matrices. Here, we
generalize a sequence of lemmas from [2] and [17] to work with block Laplacians as
well, and we refer the reader to Appendix A for further generalizations to matrices
with positive definite off-diagonal blocks. We provide proofs where they differ from
the nonblock case. The goal is to show that both of Vaidya's preconditioners achieve a
minimum eigenvalue of at least 1, and that the condition number is \scrO (\kappa mn) with an
MST preconditioner and \scrO (\kappa n2/t2) with an augmented MST preconditioner, where
\kappa is the maximum condition number of all the edge weights and we assume sufficient
sparsity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



180 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

We use \succeq to represent the Loewner order. For matrices A and B, we say A\succeq B
if and only if A  - B is positive semidefinite. A fact that we use without proof is
that the Loewner order is a partial order on symmetric matrices. We denote the
set of finite generalized eigenvalues of a pair of matrices (A,B) by \lambda (A,B). That
is to say, \lambda (A,B) is the set of numbers \lambda such that there exists a vector x where
Ax= \lambda Bx. If B is a preconditioner for A, then the condition number of the precondi-
tioned system B - 1A is precisely the ratio of the extremal finite generalized eigenvalues
\lambda max(A,B)/\lambda min(A,B).

We start by defining the support of a pair of matrices, which bounds the maximum
eigenvalue of the pair.

Definition 4.1. The support of a pair of matrices (A,B) is

\sigma (A,B) =min\{ \tau | \tau B \succeq A\} .

If no such \tau exists, then we say \sigma (A,B) =\infty .

Lemma 4.2. Suppose A and B are positive semidefinite matrices. Then

\lambda max(A,B)\leq \sigma (A,B),

and equality holds when the support is finite.

Proof. See [17, Lemma 4.4]

Since \lambda max(B,A) = \lambda min(A,B) - 1, the supports \sigma (A,B) and \sigma (B,A) are all we
need to bound the condition number \kappa (B - 1A). In fact, we already have the necessary
tools to bound the minimum eigenvalue.

Theorem 4.3. Let G= (V,E,w) be a matrix-weighted graph with subgraph H =
(V,F,w\prime ) and block Laplacians LG and LH . Then \lambda min(LG,LH)\geq 1.

Proof. Observe that LG =LH+LK where LK is the block Laplacian of the graph
K = (V,E \setminus F,w  - w\prime ). Since LG  - LH = LK is a block Laplacian, it is positive
semidefinite. This implies that \sigma (LH ,LG)\leq 1 and that \lambda min(LG,LH)\geq 1.

Bounding the maximum eigenvalue requires more effort. To simplify computing
the support of a matrix and preconditioner, we use the following lemma to decompose
the matrices into sums of positive semidefinite matrices.

Lemma 4.4. Let A=A1+ \cdot \cdot \cdot +Ak and B =B1+ \cdot \cdot \cdot +Bk, where each Ai and Bi

is positive semidefinite. Then

\sigma (A,B)\leq max
i
\{ \sigma (Ai,Bi)\} .

Proof. See [17, Lemma 4.7]

A further simplification we can make is to only consider block Laplacians with
zero block row sums. This means that we can ignore cell-substrate friction in the rest
of the analysis using the following lemma.

Lemma 4.5. Let A be a block Laplacian and define A\prime to be the matrix with the
same off-diagonal blocks as A and zero block row sums. Let B\prime be a block matrix and
B = B\prime +A - A\prime . If \beta B\prime \succeq A\prime for some \beta \geq 1, then \beta B \succeq A. Similarly, if \alpha A\prime \succeq B\prime 

for some \alpha \geq 1, then \alpha A\succeq B.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 181

Proof. See [2, Lemma 2.5].

The lower bound on \alpha and \beta is not important because the pairs of matrices with
which we are concerned have supports of at least 1. Next, we prove a small lemma
that is helpful in the rest of the section.

Lemma 4.6. Let A be a symmetric positive semidefinite matrix. Then

\lambda max(A)I \succeq A\succeq \lambda min(A)I.

Proof. Since A is symmetric positive semidefinite, it is diagonalizable and we can
write A= PDP - 1 where D is the diagonal matrix whose entries are the eigenvalues
of A. For concision, let \lambda = \lambda max(A). Observe

\lambda I  - A= \lambda I  - PDP - 1 = P (\lambda I  - D)P - 1.

By the definition of \lambda , the middle factor of \lambda I  - D has all nonnegative entries, so
the whole difference is positive semidefinite. Similar logic applies for the minimum
eigenvalue.

Now we are ready to prove the main result. We decompose a matrix and support
graph preconditioner into sums of the block Laplacians of individual edges and paths.
Then we analyze their pairwise supports with the following three lemmas.

Lemma 4.7. Suppose A and B are symmetric positive definite matrices. Let

\^A=

\left(       
A 0 \cdot \cdot \cdot 0  - A
0 0 0
...

. . .
...

0 0 0
 - A 0 \cdot \cdot \cdot 0 A

\right)       , and \^B =

\left(       
A  - A
 - A 2A  - A

.. .

 - A 2A  - A
 - A A

\right)       ,

be (k+ 1)\times (k+ 1) block matrices. Then k \^B \succeq \^A.

Proof. Let C = k \^B  - A and define \^C = diag(A - 1)C which is a block-structured
matrix in which the blocks are either nonzero or a multiple of the identity matrix.
Since diag(A - 1) is positive definite, it follows that C is semipositive definite if \^C is
positive semidefinite. We prove that \^C is positive semidefinite using induction as in
the nonblock-structured case in [2, Lemma 2.7]. The only difference is that we use a
block-structured symmetric Gaussian elimination, meaning the ith elimination step
is

\^Ci =Ei
\^Ci - 1E

T
i

where Ei is block-structured with identity blocks along its diagonal and two nonzero
off-diagonal blocks:

E1i =
1

1+ i
I, E(i+1)(i) =

1

i+ 1
I.

At completion of this process we obtain the matrix

\^C =diag

\biggl( 
0,2kI,

3k

2
I, . . . ,

\biggl( 
i+ 1

i

\biggr) 
kI, . . . ,0

\biggr) 
.

Since the matrix \^C has nonnegative values on its diagonal, this shows that \^C is
positive semidefinite.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



182 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

Lemma 4.8. Suppose A and B are symmetric positive definite matrices. Let

\^A=

\left(       
A 0 \cdot \cdot \cdot 0  - A
0 0 0
...

. . .
...

0 0 0
 - A 0 \cdot \cdot \cdot 0 A

\right)       and \^B =

\left(       
B  - B
 - B 2B  - B

.. .

 - B 2B  - B
 - B B

\right)       
be (k+ 1)\times (k+ 1) block matrices. Then k \cdot \lambda max(AB - 1) \^B \succeq \^A.

Proof. Let \lambda = \lambda max(AB - 1). When A=B, we have that \lambda = 1 and the statement
is equivalent to Lemma 4.7. When A \not = B, we can reduce to the case of equality by
multiplying \^B by diag(AB - 1). This yields

k \cdot diag(AB - 1) \^B \succeq \^A.

Next we show that k \cdot \lambda \^B \succeq k \cdot diag(AB - 1) \^B. This is equivalent to showing that
\lambda I \succeq AB - 1, which is true by Lemma 4.6. The rest follows from the transitivity of the
Loewner order.

Note that, up to permutation, the block Laplacian of a single edge looks like
\^A and that of a simple path with uniform edge weights looks like \^B. The following
congestion-dilation lemma generalizes the previous one so that \^B can have varied edge
weights.

Lemma 4.9 (congestion-dilation lemma). Let

\^A=

\left(       
A 0 \cdot \cdot \cdot 0  - A
0 0 0
...

. . .
...

0 0 0
 - A 0 \cdot \cdot \cdot 0 A

\right)       
and

\^B =

\left(       
C1  - B1

 - B1 C2  - B2

. . .

 - Bk - 1 Ck  - Bk

 - Bk Ck+1

\right)       
be (k+1)\times (k+1) block matrices where A, Bi, and Ci are symmetric positive definite
for all i and \^B has zero block row sums. Then

k \cdot max
i
\{ \lambda max(AB - 1

i )\} \cdot \^B \succeq \^A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 183

Proof. Let D=mini\{ \lambda min(Bi)\} \cdot I. Decompose

\^B = \^B1 + \^B2 =

\left(       
D  - D
 - D 2D  - D

.. .

 - D 2D  - D
 - D D

\right)       

+

\left(       
C1  - D  - B1 +D
 - B1 +D C2  - 2D  - B2 +D

.. .

 - Bk - 1 +D Ck  - 2D  - Bk +D
 - Bk +D Ck+1  - D

\right)       .

Let \lambda =maxi\{ \lambda max(AB - 1
i )\} and write

k \cdot \lambda \^B  - \^A= (k \cdot \lambda \^B1  - \^A) + (k \cdot \lambda \^B2).

The first summand is positive semidefinite by Lemma 4.8. The diagonal blocks of \^B2

are positive semidefinite and the nonzero off-diagonal blocks are negative semidefinite
by Lemma 4.6. This and the fact that the block row sums are zero mean the second
summand is a block Laplacian, so it is positive semidefinite.

Under the support of the path represented by \^B, we call \lambda the congestion of the
edge represented by \^A, and k is its dilation. A more concise statement of the lemma
is that \sigma ( \^A, \^B) is bounded above by the product of the congestion and dilation. We
use the this lemma to prove an upper bound on the maximum eigenvalue of a block
Laplacian with an MST preconditioner. The following proofs make use of the fact
that

\lambda max(A)

mini\{ \lambda min(Bi)\} 
\geq max

i
\{ \lambda max(AB - 1

i )\} .

Theorem 4.10. Let G = (V,E,w) be a matrix-weighted graph and T its MST
weighted by minimum eigenvalues. Let LG and LT be their block Laplacians and let
\kappa be the maximum condition number of all the edge weights in G. Then

\lambda max(LG,LT )\leq \kappa m(n - 1).

Proof. For every edge e= (u, v), let p(e) be the path in T from u to v that uses
at least 1/m fraction of each edge weight. We can write

LG =
\sum 
e\in E

Le and LT =
\sum 
e\in E

Lp(e)

where Le and Lp(e) are the block Laplacians of the edges and paths respectively. By
Lemma 4.4,

\sigma (LG,LT )\leq max
e\in E
\{ \sigma (Le,Lp(e))\} .

The maximum possible length (edge count) of each p(e) is n - 1. This is the dilation.
Since T is an MST, the minimum eigenvalue of each edge weight in p(e) is at least
that of w(e). This means that the congestion is at most \kappa m. The congestion-dilation
lemma yields the desired result.

Augmented MST preconditioners have a better upper bound that can be proven
similarly.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



184 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

Theorem 4.11. Let G = (V,E,w) be a matrix-weighted graph with augmented
MST T \prime as described in section 3.1. Let LG and LT \prime be their block Laplacians and let
\kappa be the maximum condition number of all the edge weights in G. If every vertex has
at most d neighbors, then

\lambda max(LG,LT \prime )\leq 2\kappa d3n2

t2
.

Proof. We perform a similar decomposition to the previous proof. Let S1, . . . , St

be the subtrees of T \prime . For each edge e = (u, v), a path from u to v in T \prime is not
necessarily unique. If both u and v are in the same Si, let p(e) be the unique path
from u to v contained in Si. If u is in Si and v is in Sj with i \not = j, let p(e) be the
concatenation of the following paths: the unique path in Si from u to the endpoint
of the edge that connects Si and Sj , that edge itself, and the unique path in Sj from
the other endpoint to v.

Now we must decide what fraction of each edge weight to use. Each edge e in
Si can be in a support path from any of the dn/t vertices in Si to any of their d
neighbors. This is d2n/t total paths, so we use t/(d2n) fraction of each edge weight.
Following the same logic as in the previous proof, we get that the congestion is at
most \kappa (d2n/t).

In the worst case, one of these paths may go across all dn/t  - 1 edges in one
subtree, the edge connecting it to another subtree, and all dn/t - 1 edges in the other
subtree. Therefore, the dilation is less than 2(dn/t) and the rest follows from the
congestion-dilation lemma.

In the context of collision graphs, \kappa is simply maxi,j\{ Aij\} \cdot \gamma max/\gamma min. Since the
minimum eigenvalue is at least 1, the preceding bounds on the maximum eigenvalue
are also bounds on the condition number of the preconditioned system.

5. Numerical benchmarks. In the previous sections, we introduced the col-
lision graph and block Laplacians, and we extended support graph theory to block-
structured matrices, giving a class of preconditioners that can be contructed directly
from the collision graph. Although we derived theoretical bounds on the eigenval-
ues of the preconditioned system, past experience with using the conjugate gradient
method in finite precision arithmetic demonstrates that theoretical estimates often
do not accurately predict performance in practice [27]. For this reason, we con-
duct benchmarking experiments to compare six preconditioning strategies: (1) no
preconditioner, (2) the block Jacobi preconditioner (i.e., the block diagonals of \Gamma ),
(3) the symmetric block Gauss--Seidel preconditioner, (4) the MST preconditioner
from section 3.1, (5) the augmented MST preconditioner from section 3.1, and (6) the
block incomplete Cholesky preconditioner with no edge fill-in together with a diagonal
shift \alpha I.

Our implementation begins with collision detection using an axis-aligned bound-
ing box approach [39] that achieves \scrO (n logn) complexity with an event-based al-
gorithm. This produces an active set of edges representing potential contacts, from
which we compute contact forces, contact areas, and friction blocks according to equa-
tion (2.1) and the Hertz contact model. Our implementation uses a sweep and prune
(SAP) algorithm without hierarchical subdivision, which limits our benchmarks to
n\leq 105 cells where SAP remains efficient.

The resulting contact graph is converted to a block-structured BCSR (block com-
pressed sparse row) format for efficient matrix-vector products, with reverse Cuthill--
McKee (RCM) ordering to improve cache locality. The MST-preconditioner is solved

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 185

using an LDLT decomposition directly on the graph structure. The augmented MST
uses nested conjugate gradient iterations following the flexible CG framework [32].
Since we observed no iteration count improvements with augmentation, we did not
pursue more efficient solution methods for this variant. All preconditioner construc-
tion operations (graph building, tree computation, and factorization) are cheaper than
a single matrix-vector product, with friction blocks assembled during force calculation
at no additional cost.

The solver is implemented in C++ using an expression-based linear algebra sys-
tem with custom block-structured vectors that leverage BLAS routines. The pre-
conditioner construction process, comprising Prim's algorithm and tree assembly, is
highly efficient, requiring less wall-clock time than a single matrix-vector product.
After construction and factorization, solving with the MST preconditioner consumes
40--80\% of the time needed for one matrix-vector product. Notably, approximately
one-third of this solving time is spent permuting matrix entries between two order-
ings: the RCM ordering used for matrix-vector operations and the ordering from
Prim's algorithm used for factorization. This overhead suggests room for improve-
ment through more sophisticated ordering strategies that simultaneously optimize
both matrix-vector products and direct solves.

For our convergence benchmarks, we employ a rigorous testing framework. We
work with known solutions to compute true relative errors and use Gauss--Radau error
estimators [31] to monitor conjugate gradient convergence. To ensure fair comparisons
across all benchmarks, we use single-threaded execution throughout.

5.1. Experimental setup. To test the preconditioning strategies, we simulate
elastic spherical cells of radius r= 0.5 (units are in 10s of \mu m) using the Hertz contact
model for cell-cell contact areas and forces. We assume that the cell-substrate friction
matrix is diagonal (i.e., \Gamma cs = \gamma medI), and the cell-cell friction matrix is given by
equation (2.1) with \gamma \| = 2\times 106 and \gamma \bot = 8\times 107, representing typical values where
cell-cell friction coefficients are 1--3 orders of magnitude greater than cell-substrate
friction [12]. We evaluate preconditioner performance across four distinct scenarios
designed to test different geometric configurations and conditioning challenges:

1. Regular hexagonal lattice (baseline): Cells arranged in hexagonal close packing
where each cell contacts 12 neighbors. We add positional noise of mean zero
and standard deviation 0.3r to create varying cell-cell contact areas. We test
with \gamma med = 3\times 104 (well-conditioned) and \gamma med = 3\times 103 (higher condition
number).

2. Random packing: Cells are randomly placed within a spheroidal domain using
a rejection sampling algorithm that enforces a minimum distance constraint
to prevent overlap. This process generates the irregular connectivity patterns
characteristic of biological tissues, avoiding the artifacts of regular lattices.
For all simulations, we use \gamma med = 3\times 104.

3. Dumbbell configuration: Two densely packed spheroids connected by a thin
bridge of randomly placed cells. This tests preconditioner performance on
graphs with bottleneck structures. We use \gamma med = 3\times 104.

For the convergence behavior study (Figure 3), we use n = 50000 cells in each
configuration and track the relative error reduction over conjugate gradient iterations.
For the scaling study (Figure 4), we use the regular lattice configuration with \gamma med =
3\times 104 and vary the problem size from n= 102 to 105 cells, measuring both iteration
counts and wall-clock time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



186 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

All experiments use a relative tolerance of 10 - 5 for the conjugate gradient stop-
ping condition, with true error computed using a known solution vector. Each data
point represents the average of 5 independent random realizations.

5.2. Benchmarking results. Figure 3 presents the convergence behavior of
different preconditioners across four challenging geometric configurations with n =
50000 cells.

The MST preconditioner demonstrates superior performance across all test
cases. On hexagonal lattices (top row), iteration reduction improves from 4.9\times at

0 50 100 150 200 250
10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

Regular Lattice
|E|/|V|=6.66, =394

0 200 400 600

Regular Lattice
|E|/|V|=6.66, =3895

0 20 40 60 80 100
Iteration

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

Random Packing
|E|/|V|=1.80

0 100 200 300
Iteration

Dumbbell
|E|/|V|=0.59

Fig. 3. Preconditioner convergence behavior for different cell arrangements: hexagonal lattices
with varying disorder (top row), random packing (bottom left), and bridged spheroids (bottom right).
The insets show cross-sections through the 3D cell configurations. The red dashed line in each plot
indicates the solver relative tolerance 10 - 5. Legend: Identity/no preconditioner (orange dotted line);
block Jacobi (green long dash-dot); diagonally-shifted block IC(0) (dashed red); block Gauss--Seidel
(cyan dash-dot); MST preconditioner (solid blue); augmented MST (gray circular markers). Top
Row: Cells arranged on a three-dimensional hexagonal lattice with positional noise of mean zero
and standard deviation 0.3r applied to each cell. Each configuration contains n\approx 50000 cells. The
edge-to-vertex ratio is reported for each configuration. Left: \gamma \mathrm{m}\mathrm{e}\mathrm{d} = 3\times 104. Right: \gamma \mathrm{m}\mathrm{e}\mathrm{d} = 3\times 103.
\kappa in the title is the full friction matrix condition number. Bottom Left: n = 50000 cells randomly
packed in a spheroidal domain with \gamma \mathrm{m}\mathrm{e}\mathrm{d} = 3\times 104. Bottom Right: Two densely packed spheroids
connected by a bridge of randomly placed cells, n\approx 50000 total, \gamma \mathrm{m}\mathrm{e}\mathrm{d} = 3\times 104.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 187

102 103 104 105

Problem Size (N cells)

10 1

100

101

102

103

104

105

To
ta

l T
im

e 
(m

s)
Computational Scaling

MST [O(N1.24)]
Augmented-MST [O(N1.46)]
IC(0) [O(N1.64)]
Blocked-Jacobi [O(N1.15)]
Gauss-Seidel [O(N1.24)]
Identity [O(N1.09)]
Eigen LDLT [O(N1.92)]

102 103 104 105

Problem Size (N cells)

0

100

200

300

400

500

600

700

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce

Iteration Count Scaling
MST
Augmented-MST
IC(0)
Blocked-Jacobi
Gauss-Seidel
Identity
Eigen LDLT

Fig. 4. Performance comparison of preconditioners for block-structured linear systems arising
from n cells arranged in a hexagonal lattice with positional noise (30\% of cell radius). Each data point
represents the average of 5 independent experiments. The friction parameters are \gamma \mathrm{m}\mathrm{e}\mathrm{d} = 3\times 104 with
\gamma \| = 2\times 106 and \gamma \bot = 8\times 107. (Left) Total wall-clock time as a function of problem size n for solving

the linear system to relative tolerance 10 - 5. Times include all computational costs: matrix assembly
(where required), preconditioner construction and factorization, and conjugate gradient iterations.
The MST preconditioner achieves a speedup of 3.5\times compared to unpreconditioned CG at n= 105.
The direct solver (Eigen LDLT) excels for n < 103 but becomes catastrophically slow for larger
problems. Preconditioners tested: (1) identity (no preconditioning), (2) block Jacobi with LDLT

factorization of diagonal blocks, (3) MST with tree construction and factorization, (4) augmented-
MST with tree construction, augmentation and nested (flexible) conjugate gradient (inner relative
tolerance \delta = 0.1), (5) IC(0) with diagonal shift and incomplete factorization, (6) block Gauss--Seidel
with setup, and (7) Eigen's sparse LDLT direct solver including assembly and factorization. The
MST preconditioner achieves the fastest total solution times. (Right) Iteration counts for the same
preconditioners as a function of n.

moderate condition number to 9.2\times at high condition numbers, significantly outper-
forming block Jacobi (1.2\times ) and block Gauss--Seidel (2.5\times ) for both moderate and
high condition number scenarios. Performance remains strong on irregular geometries:
3.8\times reduction for random spheroidal packing and 8.5\times for the sparse dumbbell con-
figuration, where traditional preconditioners struggle.

The augmented variant shows negligible improvement, likely because standard
spanning trees already achieve low stretch for these graphs. Block Gauss--Seidel
maintains consistent 2.5\times reduction across geometries, while diagonally shifted IC(0)
degrades from 2.0\times to 1.3\times on sparse configurations.

Figure 4 demonstrates computational scaling from n = 102 to 105 cells. At pro-
duction scale (n = 105), the MST preconditioner achieves between 3.4\times and 4.4\times 
wall-clock speedup over standard methods, with preconditioner construction and ap-
plication each requiring less effort than a single matrix-vector product. This efficiency,
combined with favorable iteration count scaling (right panel), ensures performance
advantages increase with problem size. Alternative methods scale poorly: the aug-
mented MST preconditioner incurs overhead from nested iteration, while incomplete
Cholesky performs poorly and requires tuning of the diagonal shift parameter.

6. Discussion. We have proposed efficient preconditioners for linear systems
arising from off-lattice cell-based models. Using the notions of matrix-weighted graphs
and block Laplacians, we extended support graph theory to this problem. By using

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



188 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

MSTs, we obtained preconditioners that are efficient to compute and factor, while
significantly decreasing the condition number, iteration count, and wall-clock time in
the conjugate gradient method. We proved bounds on the condition number for both
standard and augmented MSTs that, while overly pessimistic in practice, demonstrate
asymptotic stability. Although augmented MST preconditioners have proven effective
for mesh Laplacians, our implementation using nested conjugate gradient iterations
showed no iteration count improvement for cell-based models. We hypothesize that
the local interaction graphs from spherical cell packings already achieve sufficiently low
stretch without augmentation, though other cell geometries or packing configurations
might benefit from this technique.

We comprehensively benchmarked our proposed preconditioners against identity,
block Jacobi, block Gauss--Seidel, block IC(0), and direct sparse solvers across problem
sizes from n= 102 to 105. The MST preconditioner achieves the best wall-clock times
for larger systems relevant to production simulations while remaining competitive
with direct solvers for small systems. The magnitude of performance improvement
varies with problem characteristics, particularly condition number and graph topology,
rather than degrading systematically with connectivity. Indeed, our most substantial
improvements occurred on challenging geometries: high difference in parallel and
perpendicular cell-cell friction coefficients and near-disconnected configurations. This
robust performance across diverse scenarios establishes the MST preconditioner as
consistently advantageous for off-lattice cell-based models.

For practical implementation, several key insights emerge. The collision graph,
naturally produced by collision detection algorithms, serves dual purposes: defining
the system's friction matrix and enabling direct construction of the MST precon-
ditioner. This graph representation allows elegant implementations of the required
linear algebra operations without intermediate matrix assembly. Construction of the
MST preconditioner, including graph traversal, tree computation, and factorization,
requires less computational effort than a single matrix-vector product, with friction
blocks assembled during force calculation at no additional cost. The preconditioner
solve requires only 40--80\% of the time for one matrix-vector product, ensuring that
iteration reductions translate directly to wall-clock performance gains.

This paper generalizes and applies the earliest results in support graph theory.
While Vaidya's preconditioners are very efficient to compute, more sophisticated pre-
conditioners achieve much better condition numbers and near-linear time convergence.
The main tool they employ is the low-stretch spanning tree. These are the basis of
Spielman's groundbreaking paper [38] that uses augmented low-stretch spanning trees
as preconditioners. We can generalize the notion of stretch to matrix-weighted graphs
by examining the minimum eigenvalues of the edge weights, similar to our approach for
MSTs. Substantial progress has been made in solving symmetric diagonally dominant
systems with preconditioners derived from low-stretch spanning trees, most recently
in [21] and [13]. Additionally, with a low-stretch spanning tree, we can implement
combinatorial algorithms like those described in [22] and [25] that do not use the
conjugate gradient method at all. We expect that all results from the existing liter-
ature can be generalized to block-structured matrices by adding a factor of \kappa to the
condition number bounds.

Future work will exploit the hierarchical spatial data structures already required
for collision detection in large simulations (n > 105) where SAP becomes inefficient
without spatial subdivision [39]. These structures (octrees, Z-order, or Hilbert curve
grids) partition cells into clusters of 300--1000 elements to maintain optimal SAP per-
formance at each leaf. We envision constructing a hierarchical preconditioner where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 189

each leaf node maintains its own MST preconditioner for the local interaction sub-
graph. The full preconditioner consists of these independent local preconditioners ap-
plied in parallel, simply ignoring any interactions between regions. While this drops
some edges from the preconditioner, it enables perfect parallelization with no inter-
processor communication. The key insight is that the spatial partitioning required
to maintain SAP efficiency also creates natural subdomains for embarrassingly paral-
lel preconditioning, addressing both collision detection and linear solving bottlenecks
simultaneously through a unified hierarchical approach.

Appendix A. Positive definite off-diagonal blocks. An ostensible limitation
of the theory presented in this paper is that it only works with block Laplacians,
requiring off-diagonal blocks to be zero or negative definite. This section describes
methods of working with positive definite off-diagonal blocks as well.

There are two established ways of handling positive off-diagonal entries in the non-
block case. The first is a reduction due to Gremban [17, Lemma 7.3] which is also
described concisely in [38, Appendix A] and [29, Appendix A.2]. The validity of this
reduction immediately transfers to the block case. Let A be a block matrix whose
off-diagonal blocks are either zero or definite (positive or negative), and for every
row i,

Aii \succeq 
\sum 
j \not =i

| Aij | ,

where | \cdot | leaves positive semidefinite matrices unchanged and negates negative semi-
definite ones. This matrix is positive semidefinite by the proof from Lemma 2.4.
We may call this a generalized block Laplacian, possibly originating from a similarly
defined generalized matrix-weighted graph. Then A = D + A(+) + A( - ) where D
contains the diagonal blocks, A(+) the positive definite off-diagonal blocks, and A( - )

the negative definite ones. To solve the system Ax= b, we construct a 2n\times 2n block
Laplacian system

A\prime 
\biggl( 
x1

x2

\biggr) 
=

\biggl( 
b
 - b

\biggr) 
where A\prime =

\biggl( 
D+A( - )  - A(+)

 - A(+) D+A( - )

\biggr) 
.

The desired solution is then x= (x1 - x2)/2. Thanks to the simplicity of this reduction,
the condition number analysis from earlier still applies and \epsilon -approximate solutions
to the larger system produce \epsilon -approximate solutions to the original one.

The other method of solving a generalized Laplacian system is with a maximum
weight basis preconditioner [3]. This is a considerably more complicated technique
that requires additional analysis of the condition number, but it does not require a
reduction to a larger problem. We have not proven any analogues for the block case.

Appendix B. Assorted graph algorithms.

B.1. Directly solving systems from trees. Once the LDLT decomposition of
an MST preconditioner P is computed, we need to repeatedly solve systems Px= b.
This section describes how to do this in terms of the implicit tree structure of P
(i.e., we do not distinguish between the indices of rows and columns and the vertices
they represent). We assume the rows and columns of P are ordered as described in
Lemma 3.1 so that L has the same sparsity pattern as the lower triangle of P . Let d
be the order of the blocks of P .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



190 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

Algorithm B.1.

function ForwardSolve(L, b)
for i\leftarrow 1, . . . , n do

zi\leftarrow bi

for all children j of i do
zi\leftarrow zi  - Ljizj

end for
end for
return z

end function

Algorithm B.2.

function DiagSolve(D, z)
for i\leftarrow 1, . . . , n do

yi\leftarrow D - 1
ii zi

end for
return y

end function

Algorithm B.3.

function BackwardSolve(L, y)
for i\leftarrow n, . . . ,1 do

j\leftarrow parent of i
xi\leftarrow yi  - LT

ijxj

end for
return x

end function

Algorithm B.4.

function MatVec(G= (V,E,w), v)
for i\leftarrow 1, . . . n do

xi\leftarrow w(i, i)vi

end for
for (i, j)\in E do

xi\leftarrow xi +w(i, j)(vi  - vj)

xj\leftarrow xj +w(i, j)(vj  - vi)

end for
end function

Step 1: Forward substitution. Define z =DLTx and solve Lz = b, and proceed
as in algorithm B.1. The cost is n - 1 matrix-vector multiplications of
d\times d matrices.

Step 2: Block diagonal solve. Define y = LTx and solve Dy = z. The cost is n
solves of d\times d matrices.

Step 3: Backward substitution. Solve LTx = y. The cost is n - 1 matrix-vector
multiplications of d\times d matrices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



BLOCK SUPPORT GRAPH PRECONDITIONERS 191

B.2. Matrix-vector product of a graph. Lastly, we give an algorithm for
computing matrix-vector products with the block Laplacian of a matrix-weighted
graph. This is needed for a matrix-free implementation of the conjugate gradient
method.

REFERENCES

[1] O. Axelsson and I. Kaporin, Error norm estimation and stopping criteria in precondi-
tioned conjugate gradient iterations, Numer. Linear Algebra Appl., 8 (2001), pp. 265--286,
https://doi.org/10.1002/nla.244.

[2] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, Support-graph pre-
conditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 930--951, https://doi.org/10.
1137/S0895479801384019.

[3] E. Boman, D. Chen, and B. Hendrickson, Maximum-weight-basis preconditioners, Numer.
Linear Algebra Appl., 11 (2004), pp. 695--721, https://doi.org/10.1002/nla.343.

[4] A. Buttensch\"on and L. Edelstein-Keshet, Bridging from single to collective cell migration:
A review of models and links to experiments, PLoS Comput. Biol., 16 (2020), e1008411,
https://doi.org/10.1371/journal.pcbi.1008411.

[5] A. Buttensch\"on, P. van Liedekerke, M. Palm, and D. Drasdo, Does single cell migration
behavior permit prediction of multi-cellular migration patterns: Lessons from a physics-
based model, in-preparation, 2026.

[6] D. Chen and S. Toledo, Vaidya's preconditioners: Implementation and experimental study,
Electron. Trans. Numer. Anal., 16 (2003), pp. 30--49, https://eudml.org/doc/123266.

[7] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
[8] J. W. Demmel, N. J. Higham, and R. S. Schreiber, Stability of block LU factoriza-

tion, Numer. Linear Algebra Appl., 2 (1995), pp. 173--190, https://doi.org/10.1002/nla.
1680020208.

[9] D. Drasdo, Coarse graining in simulated cell populations, Adv. Complex Syst., 08 (2005),
pp. 319--363, https://doi.org/10.1142/S0219525905000440.

[10] D. Drasdo and S. H\"ohme, A single-cell-based model of tumor growth in vitro: Monolayers and
spheroids, Phys. Biol., 2 (2005), pp. 133--147, https://doi.org/10.1088/1478-3975/2/3/001.

[11] I. Duff and G. Meurant, The effect of ordering on preconditioned conjugate gradient , BIT,
29 (1989), pp. 635--657, https://doi.org/10.1007/BF01932738.

[12] J. Galle, M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and
apoptosis on the growth dynamics of epithelial cell populations in vitro, Biophys. J., 88
(2005), pp. 62--75, https://doi.org/10.1529/biophysj.104.041459.

[13] Y. Gao, R. Kyng, and D. A. Spielman, Robust and Practical Solution of Laplacian Equations
by Approximate Elimination, preprint, arXiv:2303.00709, 2023.

[14] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, and P. Macklin,
PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems, PLoS
Comput. Biol., 14 (2018), e1005991, https://doi.org/10.1371/journal.pcbi.1005991.

[15] F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional
extended Potts model , Phys. Rev. Lett., 69 (1992), pp. 2013--2016, https://doi.org/10.
1103/PhysRevLett.69.2013.

[16] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, 1997.
[17] K. D. Gremban, Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant

Linear Systems, Ph.D. thesis, Carnegie Mellon University, 1996.
[18] K.-P. Hadeler and J. M\"uller, Cellular Automata: Analysis and Applications, Springer,

2017.
[19] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.
[20] S. Hoehme, M. Brulport, A. Bauer, E. Bedawy, W. Schormann, M. Hermes, V. Puppe,

R. Gebhardt, S. Zellmer, M. Schwarz, et al., Prediction and validation of cell align-
ment along microvessels as order principle to restore tissue architecture in liver regener-
ation, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 10371--10376, https://doi.org/10.1073/
pnas.0909374107.

[21] A. Jambulapati and A. Sidford, Ultrasparse ultrasparsifiers and faster Laplacian system
solvers, ACM Trans. Algorithms, (2021), https://doi.org/10.1137/1.9781611976465.

[22] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, A simple, combinatorial algorithm
for solving SDD systems in nearly-linear time, in Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, 2013, pp. 911--920.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1002/nla.244
https://doi.org/10.1137/S0895479801384019
https://doi.org/10.1137/S0895479801384019
https://doi.org/10.1002/nla.343
https://doi.org/10.1371/journal.pcbi.1008411
https://eudml.org/doc/123266
https://doi.org/10.1002/nla.1680020208
https://doi.org/10.1002/nla.1680020208
https://doi.org/10.1142/S0219525905000440
https://doi.org/10.1088/1478-3975/2/3/001
https://doi.org/10.1007/BF01932738
https://doi.org/10.1529/biophysj.104.041459
https://arxiv.org/abs/2303.00709
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1103/PhysRevLett.69.2013
https://doi.org/10.1103/PhysRevLett.69.2013
https://doi.org/10.1073/pnas.0909374107
https://doi.org/10.1073/pnas.0909374107
https://doi.org/10.1137/1.9781611976465


192 JUSTIN STEINMAN AND ANDREAS BUTTENSCH\"ON

[23] H. Knutsdottir, J. S. Condeelis, and E. Palsson, 3-D individual cell based computational
modeling of tumor cell--macrophage paracrine signaling mediated by EGF and CSF-1 gra-
dients, Integr. Biol., 8 (2016), pp. 104--119, https://doi.org/10.1039/C5IB00201J.

[24] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman, Sparsified Cholesky and
multigrid solvers for connection Laplacians, in Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, 2015.

[25] Y. T. Lee and A. Sidford, Efficient accelerated coordinate descent methods and faster algo-
rithms for solving linear systems, in 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, IEEE, 2013, pp. 147--156.

[26] P. V. Liedekerke, A. Buttensch\"on, and D. Drasdo, Off-lattice agent-based models for cell
and tumor growth: Numerical methods, implementation, and applications, in Numerical
Methods and Advanced Simulation in Biomechanics and Biological Processes, M. Cerrolaza,
S. J. Shefelbine, and D. Garz\'on-Alvarado, eds., Academic Press, 2018, pp. 245--267.

[27] J. Liesen and Z. Strakos, Krylov subspace methods: Principles and analysis, Numer.
Math. Sci., (2013), https://global.oup.com/academic/product/krylov-subspace-methods-
9780199655410?cc=us\&lang=en\&.

[28] P. Macklin, M. E. Edgerton, A. M. Thompson, and V. Cristini, Patient-calibrated agent-
based modelling of ductal carcinoma in situ (DCIS): From microscopic measurements to
macroscopic predictions of clinical progression, J. Theoret. Biol., 301 (2012), pp. 122--140,
https://doi.org/10.1016/j.jtbi.2012.02.002.

[29] B. M. Maggs, G. L. Miller, O. Parekh, R. Ravi, and S. L. M. Woo, Finding effective
support-tree preconditioners, in Proceedings of the Seventeenth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, 2005, pp. 176--185.

[30] R. McLennan, L. J. Schumacher, J. A. Morrison, J. M. Teddy, D. A. Ridenour, A. C.
Box, C. L. Semerad, H. Li, W. McDowell, D. Kay, et al., Neural crest migration is
driven by a few trailblazer cells with a unique molecular signature narrowly confined to
the invasive front , Development, 142 (2015), pp. 2014--2025, https://doi.org/10.1242/dev.
117507.

[31] G. Meurant and P. Tich\`y, Error Norm Estimation in the Conjugate Gradient Algorithm,
SIAM, 2024.

[32] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444--1460,
https://doi.org/10.1137/S1064827599362314.

[33] E. Palsson, A 3-D model used to explore how cell adhesion and stiffness affect cell sort-
ing and movement in multicellular systems, J. Theoret. Biol., 254 (2008), pp. 1--13,
https://doi.org/10.1016/j.jtbi.2008.05.004.

[34] A. Pothen and S. Toledo, Elimination structures in scientific computing, Handbook Data
Structures Appl., (2018), pp. 945--965.

[35] J. Scott and M. Tuma, Algorithms for Sparse Linear Systems, Springer Nature, 2023.
[36] J. R. Shewchuk, et al., An introduction to the conjugate gradient method without the ago-

nizing pain, 1994.
[37] A. Singer and H.-T. Wu, Vector diffusion maps and the connection Laplacian, Comm. Pure

Appl. Math., 65 (2012), pp. 1067--1144, https://doi.org/10.1002/cpa.21395.
[38] D. A. Spielman and S.-H. Teng, Nearly linear time algorithms for preconditioning and solving

symmetric, diagonally dominant linear systems, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 835--885, https://doi.org/10.1137/090771430.

[39] D. J. Tracy, S. R. Buss, and B. M. Woods, Efficient large-scale sweep and prune methods
with AABB insertion and removal , in 2009 IEEE Virtual Reality Conference, IEEE, 2009,
pp. 191--198.

[40] P. Vaidya, Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners. Unpublished manuscript UIUC. 1990, in IMA Workshop
on Graph Theory and Sparse Matrix Computation, 1991.

[41] P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo,
Quantitative cell-based model predicts mechanical stress response of growing tumor spher-
oids over various growth conditions and cell lines, PLoS Comput. Biol., 15 (2019),
e1006273, https://doi.org/10.1371/journal.pcbi.1006273.

[42] P. Van Liedekerke, M. M. Palm, N. Jagiella, and D. Drasdo, Simulating tissue mechan-
ics with agent-based models: Concepts, perspectives and some novel results, Comp. Part.
Mech., 2 (2015), pp. 401--444, https://doi.org/10.1007/s40571-015-0082-3.

[43] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
Methods, 2 (1981), pp. 77--79, https://doi.org/10.1137/0602010.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1039/C5IB00201J
https://global.oup.com/academic/product/krylov-subspace-methods-9780199655410?cc=us&lang=en&
https://global.oup.com/academic/product/krylov-subspace-methods-9780199655410?cc=us&lang=en&
https://doi.org/10.1016/j.jtbi.2012.02.002
https://doi.org/10.1242/dev.117507
https://doi.org/10.1242/dev.117507
https://doi.org/10.1137/S1064827599362314
https://doi.org/10.1016/j.jtbi.2008.05.004
https://doi.org/10.1002/cpa.21395
https://doi.org/10.1137/090771430
https://doi.org/10.1371/journal.pcbi.1006273
https://doi.org/10.1007/s40571-015-0082-3
https://doi.org/10.1137/0602010

	Introduction
	Support graph preconditioners
	Outline

	Preliminaries
	Support graph preconditioners
	Vaidya's preconditioners
	The elimination game
	Solving preconditioners

	Block-structured support graph theory
	Numerical benchmarks
	Experimental setup
	Benchmarking results

	Discussion
	References
	Appendix A. Positive definite off-diagonal blocks
	Appendix B. Assorted graph algorithms
	Directly solving systems from trees
	Matrix-vector product of a graph


